651 research outputs found

    Design of a Robotic Inspection Platform for Structural Health Monitoring

    Get PDF
    Actively monitoring infrastructure is key to detecting and correcting problems before they become costly. The vast scale of modern infrastructure poses a challenge to monitoring due to insufficient personnel. Certain structures, such as refineries, pose additional challenges and can be expensive, time-consuming, and hazardous to inspect. This thesis outlines the development of an autonomous robot for structural-health-monitoring. The robot is capable of operating autonomously in level indoor environments and can be controlled manually to traverse difficult terrain. Both visual and lidar SLAM, along with a procedural-mapping technique, allow the robot to capture colored-point-clouds. The robot is successfully able to automate the point cloud collection of straightforward environments such as hallways and empty rooms. While it performs well in these situations, its accuracy suffers in complex environments with variable lighting. More work is needed to create a robust system, but the potential time savings and upgrades make the concept promising

    Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.

    Get PDF
    A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease

    An Operational Overview of the EXport Processes In the Ocean From RemoTe Sensing (EXPORTS) Northeast Pacific Field Deployment

    Get PDF
    The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set

    Dose–response relationship between device-measured physical activity and incident type 2 diabetes: findings from the UK Biobank prospective cohort study

    Get PDF
    Background: Most studies investigating the association between physical activity (PA) and the risk of type 2 diabetes are derived from self-reported questionnaires, with limited evidence using device-based measurements. Therefore, this study aimed to investigate the dose–response relationship between device-measured PA and incident type 2 diabetes. Methods: This prospective cohort study included 40,431 participants of the UK Biobank. Wrist-worn accelerometers were used to estimate total, light, moderate, vigorous and moderate-to-vigorous PA. The associations between PA and incident type 2 diabetes were analysed using Cox-proportional hazard models. The mediating role of body mass index (BMI) was tested under a causal counterfactual framework. Results: The median follow-up period was 6.3 years (IQR: 5.7–6.8), with 591 participants developing type 2 diabetes. Compared to those achieving < 150 min/week of moderate PA, people achieving 150–300, 300–600 and > 600 min/week were at 49% (95% CI 62–32%), 62% (95% CI 71–50%) and 71% (95% CI 80–59%) lower risk of type 2 diabetes, respectively. For vigorous PA, compared to those achieving < 25 min/week, individuals achieving 25–50, 50–75 and > 75 min/week were at 38% (95% CI 48–33%), 48% (95% CI 64–23%) and 64% (95% CI 78–42%) lower type 2 diabetes risk, respectively. Twelve per cent and 20% of the associations between vigorous and moderate PA and type 2 diabetes were mediated by lower BMI, respectively. Conclusions: PA has clear dose-response relationship with a lower risk of type 2 diabetes. Our findings support the current aerobic PA recommendations but suggest that additional PA beyond the recommendations is associated with even greater risk reduction. Trial registration: The UK Biobank study was approved by the North West Multi-Centre Research Ethics Committee (Ref 11/NW/0382 on June 17, 2011)

    Association between walking pace and incident type 2 diabetes by adiposity levels – a prospective cohort study from the UK Biobank

    Get PDF
    Aims: This study aims to investigate the combined association of adiposity and walking pace with incident type 2 diabetes. Methods: We undertook a prospective cohort study on 194,304 White-European participants (mean age 56.5 years, 55.9% women). Participants’ walking pace was self-reported as brisk, average, or slow. Adiposity included body mass index (BMI), waist circumference (WC) and body fat percentage (BF%). The associations were investigated using Cox proportional hazard models, with a 2-year landmark analysis. A four-way decomposition analysis was used for mediation and additive interaction. Results: The median follow-up was 5.4 years (IQR: 4.8- 6.3). During the follow-up period, 4564 participants developed type 2 diabetes. Compared to brisk walking participants with normal BMI, those with obesity who walked briskly were at a ~10-12 fold higher risk of type 2 diabetes (HR: 9.64 [95% CI: 7.24; 12.84] in women; HR: 11.91 [95% CI: 8.80; 16.12] in men), whereas those who with obese and walked slowly had ~12-15-fold higher risk (HR: 12.68 [95% CI: 9.62; 16.71] for women; and HR: 15.41 [95% CI: 11.27; 21.06] for men). There was evidence of additive interaction between WC and BF% and walking pace among women, explaining 17.8% and 47.9% excess risk respectively. Obesity mediated the association in women and men, accounting for 60.1% and 44.9%, respectively. Conclusions: Slow walking pace is a risk factor for type 2 diabetes independent of adiposity. However, promoting brisk walking as well as weight management might be an effective type 2 diabetes prevention strategy given its synergistic effect

    Detection of Prion Protein Particles in Blood Plasma of Scrapie Infected Sheep

    Get PDF
    Prion diseases are transmissible neurodegenerative diseases affecting humans and animals. The agent of the disease is the prion consisting mainly, if not solely, of a misfolded and aggregated isoform of the host-encoded prion protein (PrP). Transmission of prions can occur naturally but also accidentally, e.g. by blood transfusion, which has raised serious concerns about blood product safety and emphasized the need for a reliable diagnostic test. In this report we present a method based on surface-FIDA (fluorescence intensity distribution analysis), that exploits the high state of molecular aggregation of PrP as an unequivocal diagnostic marker of the disease, and show that it can detect infection in blood. To prepare PrP aggregates from blood plasma we introduced a detergent and lipase treatment to separate PrP from blood lipophilic components. Prion protein aggregates were subsequently precipitated by phosphotungstic acid, immobilized on a glass surface by covalently bound capture antibodies, and finally labeled with fluorescent antibody probes. Individual PrP aggregates were visualized by laser scanning microscopy where signal intensity was proportional to aggregate size. After signal processing to remove the background from low fluorescence particles, fluorescence intensities of all remaining PrP particles were summed. We detected PrP aggregates in plasma samples from six out of ten scrapie-positive sheep with no false positives from uninfected sheep. Applying simultaneous intensity and size discrimination, ten out of ten samples from scrapie sheep could be differentiated from uninfected sheep. The implications for ante mortem diagnosis of prion diseases are discussed

    Prion Seeding Activities of Mouse Scrapie Strains with Divergent PrPSc Protease Sensitivities and Amyloid Plaque Content Using RT-QuIC and eQuIC

    Get PDF
    Different transmissible spongiform encephalopathy (TSE)-associated forms of prion protein (e.g. PrPSc) can vary markedly in ultrastructure and biochemical characteristics, but each is propagated in the host. PrPSc propagation involves conversion from its normal isoform, PrPC, by a seeded or templated polymerization mechanism. Such a mechanism is also the basis of the RT-QuIC and eQuIC prion assays which use recombinant PrP (rPrPSen) as a substrate. These ultrasensitive detection assays have been developed for TSE prions of several host species and sample tissues, but not for murine models which are central to TSE pathogenesis research. Here we have adapted RT-QuIC and eQuIC to various murine prions and evaluated how seeding activity depends on glycophosphatidylinositol (GPI) anchoring and the abundance of amyloid plaques and protease-resistant PrPSc (PrPRes). Scrapie brain dilutions up to 10-8 and 10-13 were detected by RT-QuIC and eQuIC, respectively. Comparisons of scrapie-affected wild-type mice and transgenic mice expressing GPI anchorless PrP showed that, although similar concentrations of seeding activity accumulated in brain, the heavily amyloid-laden anchorless mouse tissue seeded more rapid reactions. Next we compared seeding activities in the brains of mice with similar infectivity titers, but widely divergent PrPRes levels. For this purpose we compared the 263K and 139A scrapie strains in transgenic mice expressing P101L PrPC. Although the brains of 263K-affected mice had no immunoblot-detectable PrPRes, RT-QuIC indicated that seeding activity was comparable to that associated with a high-PrPRes strain, 139A. Thus, in this comparison, RT-QuIC seeding activity correlated more closely with infectivity than with PrPRes levels. We also found that eQuIC, which incorporates a PrPSc immunoprecipitation step, detected seeding activity in plasma from wild-type and anchorless PrP transgenic mice inoculated with 22L, 79A and/or RML scrapie strains. Overall, we conclude that these new mouse-adapted prion seeding assays detect diverse types of PrPSc

    Presence and Seeding Activity of Pathological Prion Protein (PrPTSE) in Skeletal Muscles of White-Tailed Deer Infected with Chronic Wasting Disease

    Get PDF
    Chronic wasting disease (CWD) is a contagious, rapidly spreading transmissible spongiform encephalopathy (TSE), or prion disease, occurring in cervids such as white tailed-deer (WTD), mule deer or elk in North America. Despite efficient horizontal transmission of CWD among cervids natural transmission of the disease to other species has not yet been observed. Here, we report for the first time a direct biochemical demonstration of pathological prion protein PrPTSE and of PrPTSE-associated seeding activity, the static and dynamic biochemical markers for biological prion infectivity, respectively, in skeletal muscles of CWD-infected cervids, i. e. WTD for which no clinical signs of CWD had been recognized. The presence of PrPTSE was detected by Western- and postfixed frozen tissue blotting, while the seeding activity of PrPTSE was revealed by protein misfolding cyclic amplification (PMCA). Semi-quantitative Western blotting indicated that the concentration of PrPTSE in skeletal muscles of CWD-infected WTD was approximately 2000-10000 -fold lower than in brain tissue. Tissue-blot-analyses revealed that PrPTSE was located in muscle-associated nerve fascicles but not, in detectable amounts, in myocytes. The presence and seeding activity of PrPTSE in skeletal muscle from CWD-infected cervids suggests prevention of such tissue in the human diet as a precautionary measure for food safety, pending on further clarification of whether CWD may be transmissible to humans

    Attomolar Detection of Botulinum Toxin Type A in Complex Biological Matrices

    Get PDF
    BACKGROUND: A highly sensitive, rapid and cost efficient method that can detect active botulinum neurotoxin (BoNT) in complex biological samples such as foods or serum is desired in order to 1) counter the potential bioterrorist threat 2) enhance food safety 3) enable future pharmacokinetic studies in medical applications that utilize BoNTs. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a botulinum neurotoxin serotype A assay with a large immuno-sorbent surface area (BoNT/A ALISSA) that captures a low number of toxin molecules and measures their intrinsic metalloprotease activity with a fluorogenic substrate. In direct comparison with the "gold standard" mouse bioassay, the ALISSA is four to five orders of magnitudes more sensitive and considerably faster. Our method reaches attomolar sensitivities in serum, milk, carrot juice, and in the diluent fluid used in the mouse assay. ALISSA has high specificity for the targeted type A toxin when tested against alternative proteases including other BoNT serotypes and trypsin, and it detects the holotoxin as well as the multi-protein complex form of BoNT/A. The assay was optimized for temperature, substrate concentration, size and volume proportions of the immuno-sorbent matrix, enrichment and reaction times. Finally, a kinetic model is presented that is consistent with the observed improvement in sensitivity. CONCLUSIONS/SIGNIFICANCE: The sensitivity, specificity, speed and simplicity of the BoNT ALISSA should make this method attractive for diagnostic, biodefense and pharmacological applications

    TESS delivers its first Earth-sized planet and a warm sub-Neptune

    Get PDF
    The future of exoplanet science is bright, as TESS once again demonstrates with the discovery of its longest-period confirmed planet to date. We hereby present HD 21749b (TOI 186.01), a sub-Neptune in a 36-day orbit around a bright (V = 8.1) nearby (16 pc) K4.5 dwarf. TESS measures HD21749b to be 2.61βˆ’0.16+0.17^{+0.17}_{-0.16} RβŠ•R_{\oplus}, and combined archival and follow-up precision radial velocity data put the mass of the planet at 22.7βˆ’1.9+2.222.7^{+2.2}_{-1.9} MβŠ•M_{\oplus}. HD 21749b contributes to the TESS Level 1 Science Requirement of providing 50 transiting planets smaller than 4 RβŠ•R_{\oplus} with measured masses. Furthermore, we report the discovery of HD 21749c (TOI 186.02), the first Earth-sized (Rp=0.892βˆ’0.058+0.064RβŠ•R_p = 0.892^{+0.064}_{-0.058} R_{\oplus}) planet from TESS. The HD21749 system is a prime target for comparative studies of planetary composition and architecture in multi-planet systems.Comment: Published in ApJ Letters; 5 figures, 1 tabl
    • …
    corecore